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Abstract

A symmetry-extended mobility rule is formulated for body-hinge frameworks

and used to derive necessary symmetry conditions for isostatic (statically

and kinematically indeterminate) frameworks. Constructions for symmet-

ric body-hinge frameworks with an isostatic scalar count are reported, and

symmetry counts are used to examine these structures for hidden, symmetry-

detectable mechanisms. Frameworks of this type may serve as examples for

exploration of a symmetry extension of the (now proven) ‘molecular conjec-

ture’.
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framework

1. Introduction

Isostatic systems are both kinematically and statically determinate, and

so are fixed in configuration, and have no internal stresses when unloaded,

thus allowing high precision placement of components, as discussed by Maxwell

for scientific apparatus in Section 4 of (Maxwell, 1876). This has particu-

lar engineering relevance in harsh thermal environments such as space (Bu-

jakas and Rybakova, 1998). Isostatic systems are able to react to changes in

shape of their constituent bodies by deforming without building up internal

stresses, and so find application as ‘parallel’ robots, such as the Stewart plat-

form (Stewart, 1965), deployable structures (Miura et al., 1985) and easily

driven adaptive structures (Baker and Friswell, 2009)

In general, symmetry arguments give powerful tools for the detection

of hidden mechanisms in structures that scalar counting arguments would

predict to be isostatic. There are also many examples of highly symmetric

structures that counting without symmetry predicts to be over-constrained,

but which have mechanisms that are revealed by symmetry-extended count-

ing rules (Röschel, 2002, 2012; Chen et al., 2012). The symmetry approach

has already been used to develop symmetry-extended mobility criteria for

bar-and-joint (Fowler and Guest, 2000; Connelly et al., 2009) and body-bar

(Guest et al., 2010) frameworks. Here we make a natural extension to body-

hinge structures, as a way of finding the symmetries of their mechanisms and
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(a) (b)

Figure 1: Two example body-hinge structures: (a) shows a central panel connected to two
outer planes through simple rotational hinges; (b) shows a model of a propane molecule
in which each of the outer methyl groups is able to rotate about the bond to the central
carbon atom. Each of these structures has two mechanisms, as in each case the hinges are
able to rotate independently of one another.

states of self stress and identifying conditions for a symmetric structure of

this type to be isostatic. Two simple examples of body-hinge structures are

shown in Figure 1

In addition to the practical goal of explaining mechanisms in particular

systems, the study of symmetry aspects of body-hinge structures has an-

other motivation. The long-standing ‘molecular conjecture’ (Tay and White-

ley, 1984) was recently proved (Katoh and Tanigawa, 2011): under generic

conditions, a body-hinge framework and a ‘molecular’ structure with the

same underlying multi-graph have the same rigidity properties. (A molecu-

lar structure, named by analogy with chemical structures, is one in which the

lines of the hinges attached to each body all pass through a common point in

that body. Figure 1(b) shows an example based on the propane molecule.)

A recently proposed generalisation is the conjecture that symmetric body-

bar, body-hinge and molecular structures that all share a common symmetry
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and a common underlying multi-graph will have the same rigidity proper-

ties under symmetry-generic conditions (Porta et al., 2013). Comparison of

the analogous symmetry counts for body-bar frameworks and the molecular

structures that result from specialisation of the body-hinge systems consid-

ered in the present study could provide extra evidence for the ‘symmetric

molecular conjecture’. The present study also gives ways of quickly con-

structing examples of symmetric molecular structures with small numbers of

mechanisms, for comparison with corresponding body-bar frameworks, hence

furnishing examples for investigation of the symmetric molecular conjecture.

The plan of the paper is as follows. First, the symmetry-extended mobil-

ity rule for body-hinge structures is obtained for assemblies of bodies pairwise

connected by revolute hinges. Secondly, we derive general symmetry con-

straints on isostatic structures of body-hinge type. Finally, we present con-

structions for systems that are predicted to be isostatic by counting without

symmetry, and examine their symmetry counts to determine whether they

have symmetry-detectable mechanisms that are hidden by the scalar count.

In what follows, it is assumed that we are working with frameworks in

three dimensions, except when specifically stated that we are dealing with

the restriction of the system to the plane.

2. Background

The simple counting rule for calculating to first order the degrees of free-

dom (or the mobility) m of a mechanical linkage with b bodies connected by
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g joints, where joint i permits fi degrees of freedom, is associated with Grbler

and Kutzbach and was given in the following form by Hunt(Hunt, 1978):

m = 6(b− 1)− 6g +

g∑
i=1

fi. (1)

The generalized version of this rule that allows for states of self-stress in the

same way as Calladine’s extension (Calladine, 1978) of Maxwell’s Rule for

bar-and-joint frameworks (Maxwell, 1864) is

m− s = 6(b− 1)− 6g +

g∑
i=1

fi, (2)

where s is the dimension of the space of self-stresses of the linkage. Equation 2

can be derived by considering the dimensions of the four fundamental vector

subspaces of an equilibrium/compatability matrix, which can be defined for

any set of linearised constraints (see, e.g., Guest and Pellegrino (1994) for an

example).

A joint which allows exactly one revolute degree of freedom between the

two bodies that it joins is called a hinge. Moreover, a mechanical linkage is

called a body-hinge structure if every joint of the linkage is a hinge. Our goal

is to derive necessary conditions for a symmetric body-hinge structure to be

isostatic, i.e., to have m = s = 0.

Note that for a body-hinge structure with b bodies and h hinges, (2)

becomes

m− s = 6(b− h− 1) + h = 6b− 6− 5h. (3)
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(In the restriction to two dimensions, the RHS is 3(b−h−1)+h = 3b−3−2h.)

3. A symmetry-extended mobility rule for body-hinge structures

The symmetry-extended version of the generalized mobility rule (2) is

(Guest and Fowler, 2005):

Γ(m)− Γ(s) = (ΓT + ΓR)× (Γ(v, C)− Γ‖(e, C)− Γ0) + Γf (4)

where each Γ is the vector of the traces of the corresponding representation

matrices in some point group G. Each such Γ is known in applied group the-

ory as a representation of G (Bishop, 1973), or in mathematical group theory

as a character (James and Liebeck, 2001). In applied group theory, the term

character is often used informally for denoting an entry of a representation,

i.e., the trace of a representation matrix (Cotton, 1990) for a given operation.

In (4), Γ(m) and Γ(s) are the representations of the mobility and the

states of self-stress, respectively. ΓT and ΓR are the representations of rigid-

body translations and rotations, and can be read off from standard character

tables for point-groups (Atkins et al., 1970; Altmann and Herzig, 1994). In

3D, ΓT+ΓR is the six-dimensional Γ(Tx, Ty, Tz)+Γ(Rx, Ry, Rz); in 2D, ΓT+ΓR

is the three-dimensional Γ(Tx, Ty) + Γ(Rz), where the system lies in the xy

plane. Γ0 denotes the trivial representation which takes the value of one for

all group elements.

The other representations are defined in terms of the so-called contact

6



polyhedron C associated with the given body-hinge structure. C has one

vertex for each body of the structure and two vertices are joined by an edge

of C iff the corresponding bodies are connected by a joint. There is some

choice in the construction of C, as we discuss further below. Note that C

is not always a polyhedron in the graph theoretical sense: in some cases it

may correspond to a non-planar graph, and in some to a non-planar graph.

Further, its geometric embedding may have non-planar faces, or even degen-

erate to a polygon. Γ(v, C) is the permutation representation of the vertices

of C, and Γ‖(e, C) is the representation of a set of vectors along the edges of

C. Finally, Γf is the representation of the total set of freedoms allowed by

the joints.

Our previous treatments of mobility (Guest and Fowler, 2005) deals with

hinges of all type including sliders and screws, but in the present context,

for a body-hinge structure, the symmetry-extended mobility rule (Guest and

Fowler, 2005) equivalent to (3) is

Γ(m)− Γ(s) = (ΓT + ΓR)× (Γ(v, C)− Γ‖(e, C)− Γ0) + Γh (5)

where Γh is the representation of the revolute degrees of freedom allowed by

the hinges (which we will determine below).

The form of the product on the RHS of (5) has one immediate conse-

quence: as the multiplier (ΓT + ΓR) has character zero under all improper

(parity reversing) operations, the character of Γ(m) − Γ(s) under such op-
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erations is determined entirely by that of the hinge freedoms for those op-

erations. A second deduction can be made about frameworks that have

an isostatic count of bars and hinges and have no body or hinge lying on

an element of symmetry. Following the reasoning applied to bar-and-joint

frameworks in (Fowler et al., 2014), in the present case it is the bodies and

hinges that fall into orbits of size |G|, and all vertex, edge and hinge repre-

sentations are multiples of Γreg (which has character |G| under the identity,

and zero under all other symmetry operations). Thus,

Γ(v, C) = b0Γreg

Γ‖(e, C) = Γh = h0Γreg,

with b0 = b/|G| and h0 = h/|G|. Since the framework has an isostatic count

under the identity operation, we have (in 3D)

(6b0 − 5h0)|G| = 6. (6)

The full symmetry equation (5) reduces to

Γ(m)− Γ(s) =
6

|G|
Γreg − (ΓT + ΓR), (7)

implying that the representation Γ(m)−Γ(s) has character −4 cos(2π/n)− 2

under operations Cn, and zero under all others. The framework must then

have symmetry-detectable mechanisms and/or states of self stress unless the
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rigid body motions have the special symmetry

ΓT + ΓR =
6

|G|
Γreg. (8)

This last relation holds only for the following point groups: C3v, C3h, S6

(|G| = 6); C3 (|G| = 3); Ci, Cs (|G| = 2); and the trivial C1 (|G| = 1). In all

other groups, no framework where the count is isostatic and all components

are general position can be isostatic in fact.

For frameworks restricted to the plane, equations (7) and (8) reduce to

Γ(m)− Γ(s) =
3

|G|
Γreg − (ΓT + ΓR), (9)

and the isostatic requirement is

ΓT + ΓR =
3

|G|
Γreg. (10)

The available point groups for the 2D case are Cn and Cnv (with Cs ≡ C1v),

and the requirement (10) holds only for C3 and the trivial C1. Thus, C3 is the

only non-trivial symmetry group for which a 2D isostatic framework cab be

achieved without structural elements lying on an element of symmetry.

The machinery of the symmetry-extended mobility rule requires a geo-

metric realisation of the contact graph, and this is what we are calling here

the contact polyhedron, C. The notion of a contact polyhedron requires some

further discussion in the context of body-hinge frameworks. Given a body-
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hinge assembly, the contact graph is defined by the underlying combinatorics

of the assembly; the vertices correspond to the bodies and the edges to the

hinges, each of which links exactly two bodies. Thus, the contact graph is

simple, without loops or multiple edges. We are interested in the kinematics

of this assembly, rather than the physical shapes of the individual bodies,

and hence the significant geometrical information is that related to the posi-

tioning of the hinge lines. Together, the contact graph and the geometry of

the hinge lines together define the ‘kinematic symmetry’ of the framework,

and hence a point group G.

In general, there is some freedom in the choice of the contact polyhe-

dron C. To maximize information, we wish to work within the kinematic

symmetry group, the largest point group compatible with the disposition of

hinges and bodies, and therefore impose this symmetry on C. For simplicity,

where possible we wish to align edges of C along hinge lines. Hinges which

are aligned with edges of C will be called torsional hinges. In some cases,

this alignment will fully define the positions of the vertices of C. If this is

true for all vertices, and hence all hinges are torsional hinges, then we have a

molecular framework, as defined earlier. Hinges that are not so aligned with

edges will be called non-torsional. In frameworks confined to the plane, all

hinges are of this type.

Figure 2 shows a simple case where two fully symmetric choices of C can

be made, one where all edges of C line up with hinge lines (torsional) and one

where all edges of C are perpendicular to hinge lines (non-torsional). Working
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(a) (b) (c)

Figure 2: Examples of the choice of geometrically distinct contact ‘polyhedra’ for the same
body-hinge structure, in this case the three plane structure shown in Figure 1(a). Three
choices are shown: (a) edges chosen perpendicular to the hinge lines; (b) edges chosen
along the hinge lines; (c) edges chosen to have no particular geometric relationship with
the hinge lines.

consistently with either choice yields the same expression for Γ(m)−Γ(s), as it

must, since mechanisms and self-stresses exist independently of our procedure

for calculating their representations. In this case, we find Γ(m) − Γ(s) =

A2 + B2, which describe respectively con- and dis-rotatory combinations of

the two independent hinge mechanisms.

4. Derivation of the symmetry representations for isostatic body-

hinge frameworks

Given a choice of contact polyhedron, and in particular the positions of

the edges, hinges fall into the two basic types, torsional and non-torsional,

defined above and illustrated in Figures 3 and 4.

In order to apply the symmetry-extended mobility rule, we need to know

how the degree of freedom of a hinge behaves under the various symmetry

operations that might leave the hinge unshifted. For a given hinge, the

contribution to the character (or trace of the representation matrix) for an
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(a)

e
h

(b)

Figure 3: (a) A torsional hinge (with the dashed line denoting the hinge line). The vector
indicates the directed edge e of the contact polyhedron. For a torsional hinge, the hinge
line is collinear with the edge e. (b) A symbolic depiction of the torsional hinge, showing
the hinge realised as a rod with a stop rotating within a cylindrical tube. Note that a
torsional hinge in isolation has D∞h symmetry.

(a)

e

h

(b)

Figure 4: (a) A non-torsional hinge (with the dashed line denoting the hinge line). The
vector indicates the directed edge e of the contact polyhedron. For a non-torsional hinge,
the hinge line crosses the edge e. (b) A symbolic depiction of a non-torsional hinge. Note
that a non-torsional hinge in isolation has at most D2h symmetry, realised when the angle
between e and h is 90◦.
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operation x ∈ G that leaves the hinge unshifted is χrevolute, computed using

the formula (Guest and Fowler, 2005):

χrevolute(x) = χRh
(x)χe‖(x).

The two terms on the RHS of this expression are easily computed and the

results for χrevolute are as shown in Tables 1 and 2 for torsional and non–

torsional hinges, respectively.

E Cn(h) C ′2 σ(h ⊥) σ(h) i Sn(h)
χRh

1 1 −1 −1 1 1 1
χe‖ 1 1 −1 1 −1 −1 −1
χrevolute 1 1 1 −1 −1 −1 −1

Table 1: Contribution to characters for a single torsional hinge that is unshifted under a
given operation. C ′2 are half-turns about axes perpendicular to the hinge line h. σ(h ⊥)
is a mirror which contains the hinge line h. σ(h) is the mirror with normal line h.

E C2(h) C2(e ‖) C2(h× e ‖) i σ(h) σ(e ‖) σ(h× e ‖)
χRh

1 1 −1 −1 1 1 −1 −1
χe‖ 1 −1 1 −1 −1 1 −1 1
χrevolute 1 −1 −1 1 −1 1 1 −1

Table 2: Contribution to characters for a single non-torsional hinge that is unshifted under
a given operation. Cn(l) is the n-fold rotation about axis l: C2(e ‖) is the two-fold rotation
along the edge of the contact polyhedron; C2(h× e ‖) is the two-fold rotation about a line
perpendicular to both the edge and the hinge line h. σ(l) is the mirror with normal line l.
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The characters of the representation Γ(v, C), i.e., the permutation represen-

tation of the bodies, are used to construct the first line of Table 3. The

following notation is used:

b is the number of bodies (number of vertices of the contact polyhedron C);

bn denotes the number of vertices of C that are fixed by a rotation Cn, n ≥ 3;

b2 denotes the number of vertices of C that are fixed by a half-turn C2;

bσ denotes the number of vertices of C that are fixed by a reflection σ;

bc denotes the number of vertices of C that are fixed by an inversion i;

bnc denotes the number of vertices of C that are fixed by an improper rotation

Sn, n ≥ 3.

The characters of the representation Γ‖(e, C) are also used in the construction

of the first line of Table 3. The relevant notation is:

e is the number of edges of the contact polyhedron C;

e‖ is the number of edges which lie along a Cn axis (For n > 2 these edges

must correspond to torsional hinges);

e⊥ is the number of edges which lie perpendicular to a C2 axis;

e‖σ, e⊥σ are the numbers of edges that are centered in, and lie parallel /

perpendicular to, a σ reflection plane;
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ec is the number of edges centered at the inversion centre;

enc is the number of edges that lie along an improper Sn rotation axis and

are reversed by the Sn operation.

Finally, the characters of the representation Γh are given in the last line of

Table 3. The relevant notation is:

h = e is the number of hinges;

h
(T )
‖ , h

(NT )
‖ are the numbers of torsional/non-torsional hinges whose hinge-

line lies along the Cn axis (n > 2 is possible only for a torsional hinge);

h
(T )
⊥ , h

(NT )
⊥ are the numbers of torsional/non-torsional hinges whose hinge-

line lies across a Cn axis (only n = 2 is possible);

h
(T )
‖σ , h

(T )
⊥σ , h

(NT )
‖σ , h

(NT )
⊥σ are the numbers of torsional/non-torsional hinges

centered in, and lying parallel/perpendicular to, a σ reflection plane;

h
(T )
c , h

(NT )
c are the numbers of torsional/non-torsional hinges whose hinge-

lines are centered at the inversion centre;

h
(T )
nc is the number of torsional hinges whose hinge-line lies along an Sn axis

where n > 2, and are reversed by the Sn operation (possible only for a

torsional hinge).
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5. Examples

By Tay’s theorem (Tay, 1984) and the proof of the molecular conjecture

(Katoh and Tanigawa, 2011), a generic body-hinge or molecular framework

in three dimensions with b bodies and h hinges is isostatic if and only if

it satisfies the scalar count 5h = 6b − 6, and for all substructures with h′

hinges connecting b′ bodies, we have 5h′ ≤ 6b′ − 6. In the following, we

use the symmetry representations of the previous section to examine the

symmetry-induced mobility of some symmetric body-hinge structures which

are predicted to be isostatic by Tay’s counts.

5.1. Conformers of cyclohexane

As a first example, we consider a ring of six carbon atoms (the carbon

skeleton of the cyclohexane molecule) and its two basic conformations, the

‘boat’ and the ‘chair’ (see Figure 5.1). These structures are also molecular

frameworks in the mathematical sense, consisting of six bodies (atoms) and

six torsional hinges (bonds). Clearly, cyclohexane satisfies the isostatic scalar

count 5h = 6b − 6 = 30, and it is easy to verify that the sparsity condition

for all substructures is also satisfied. Thus, generic realisations of this 6-loop

Guest and Fowler (2010) framework are isostatic.

Suppose now that the structure is realised with C2 symmetry, as the boat

conformation of cyclohexane (see Figure 5.1(a)). As there is no hinge fixed

by the half-turn, it follows from the characters in Table 3 that there must

be exactly one body fixed by the half-turn (i.e., b2 = 1) for the structure to
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be isostatic. Thus, since the boat conformation has no body fixed by the

half-turn, we may conclude that the boat is not isostatic. In fact, we have

Γ(m)−Γ(s) = A−B, as computed in (Guest and Fowler, 2010), for example,

and there is a well known continuous mechanism between boat forms (see

e.g., Graveron-Demilly (1977, 1978)).

Similarly, using the calculations in Table 3, it is easy to verify that the

chair conformation of cyclohexane (i.e., the six-ring realised with C3 symme-

try) satisfies the count Γ(m) − Γ(s) = 0, as there is neither a hinge nor a

body fixed by the three-fold rotation (see Figure 5.1(b)). Thus, the ‘chair’ is

correctly predicted to be isostatic.

C2

(a)

C3

(b)

Figure 5: Two basic conformations of cyclohexane: The ‘boat’ has half-turn symmetry
and is flexible (a); the ‘chair’ has 3-fold rotational symmetry and is isostatic (b).

The C2-preserving continuous mechanism of the ‘boat’ and the rigidity

of the ‘chair’ were also treated in (Schulze et al., 2013) by modeling the

molecular structures as body-bar frameworks, where each hinge is replaced

by 5 independent bars, each intersecting the corresponding hinge line (leaving

one relative degree of freedom between a pair of bodies), and by applying

‘orbit counting methods’ (Schulze et al., 2013; Schulze and Whiteley, 2011;

Tanigawa, 2012) for body-bar frameworks to these structures.
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However, note that while the orbit counts in (Schulze et al., 2013) (as

well as the results in (Guest et al., 2010) and (Tanigawa, 2012)) provide

information about the (symmetry-preserving) mobility of symmetric body-bar

realisations of a given multi-graph, a proof of the symmetric version of the

molecular conjecture would be needed to transfer these results to symmetric

molecular realisations of the multi-graph. More precisely, the symmetric

molecular conjecture asserts that under symmetry-generic conditions, a body-

bar framework and a molecular framework with the same underlying multi-

graph have the same rigidity properties (Porta et al., 2013); that is, the

special geometry of the positioning of the hinge lines in a symmetry-generic

molecular realisation of the multi-graph cannot give rise to any additional

(first-order) flexibility.

As the special geometry of the hinge locations in a molecular framework

is captured by the contact polyhedron C, the present method allows us to an-

alyze the mobility of symmetric molecular structures directly, without using

the unproven symmetric molecular conjecture, and hence is more powerful

than orbit-based counting methods for body-bar frameworks. In fact, part of

the motivation for the present contribution is that our results concerning the

rigidity and flexibility of symmetric body-hinge and molecular frameworks

can be compared with corresponding results for symmetric body-bar frame-

works in order to probe the symmetric molecular conjecture. For example,

when compared with the symmetry counts for body-bar frameworks derived

in (Guest et al., 2010), the symmetry counts for the corresponding molecular
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frameworks obtained in this paper do not give rise to any added necessary

conditions for rigidity, and are thus compatible with the symmetric molecular

conjecture.

5.2. Ring of rotating tetrahedra

Another symmetric body-hinge structure with the 6-cycle as a contact

graph is the ring of six rotating tetrahedra shown in Figure 6. The maximal

symmetry that this structure can achieve is D3d. Note that the position-

ing of the hinge lines in this structure prevents us from choosing a contact

polyhedron with D3d symmetry whose edges are aligned with the hinge lines.

Therefore, each of the hinges in this structure is non-torsional. For each re-

flection σ with a ‘vertical mirror plane’ in the group, there are exactly two

hinges that are fixed by σ, and since both of these hinges lie parallel to the

reflection plane (i.e., h
(NT )
‖σ = 2), the characters in Table 3 imply that the

structure has a non-trivial first-order motion. In fact, this motion extends

to a continuous mechanism which maintains C3v symmetry throughout the

path. For a detailed analysis of this mechanism we refer the reader to (Guest,

2000; Fowler and Guest, 2005; Guest and Fowler, 2010).

5.3. A partial prism

Next, we consider the molecular structure shown in Figure 7. This struc-

ture is based on a partial octagonal prism and consists of two rings of 8 bodies

alternating with (8) torsional hinges which are linked by two additional tor-

sional hinges. This structure is easily verified to satisfy the non-symmetric
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(a) (b) (c) (d) (e)

Figure 6: The finite motion of the rotating ring of six tetrahedra, showing one quarter
of a complete cycle: (a) D3h high symmetry point; (b) generic C3v symmetry; (c) D3d

high symmetry point; (d) generic C3v symmetry; (e) D3h high symmetry point. The hinge
lines between tetrahedra have been marked with a dashed line. The contact polyhedron
is also shown for (c), where the edges of the polyhedron are perpendicular to the hinge
lines, which are shown dashed and centred on the polyhedron edges.

Tay counts, and hence is isostatic for generic, non-symmetric realisations.

As indicated in Figure 7, the structure can be realised with a maximal point

group symmetry of D2h, in which case it follows immediately from the char-

acters in Table 3 that there exists a non-trivial first-order motion. Since two

of the three half-turn axes intersect neither a body nor hinge, the structure

cannot be isostatic. In Table 4, we give a detailed analysis of D2-symmetric

realisations of this structure using the symmetry-extended mobility rule.

By the computation shown in Table 4, we have Γ(m)− Γ(s) = A1 − B2,

indicating one mechanism that preserves the full D2 symmetry, and a B2-

symmetric state of self-stress that is symmetric under only one of the two-fold

rotations. As the mechanism is totally symmetric and the state of self-stress

is not, the mechanism is finite (Kangwai and Guest, 1999; Guest and Fowler,
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x

y

z

Figure 7: A molecular structure based on a partial octagonal prism which has a continuous
motion that preserves D2 symmetry. Dashed lines indicate edges that are removed from
the complete prism to form this structure. Axes x, y and z are C2 symmetry elements.

D2 E C2(x) C2(y) C2(z)

Γ(v, C) 16 0 0 0
−Γ‖(e, C) −18 0 2 0

−Γ0 −1 −1 −1 −1

= −3 −1 1 −1
×(ΓT + ΓR) 6 −2 −2 −2

= −18 2 −2 2
+Γh 18 0 2 0

= Γ(m)− Γ(s) 0 2 0 2

Table 4: Calculation of representations used in the symmetry-extended mobility rule for
the molecular structure shown in Figure 7, and here analysed in D2 symmetry.
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2007) (see also (Schulze, 2010)).

In Porta et al. (2013), orbit-counting methods for symmetric body-bar

frameworks were used to predict a symmetry-preserving continuous mecha-

nism of this structure whenever it is realised with D2 (or C2) point group

symmetry. To gather evidence for the symmetric version of the molecular

conjecture, the configuration spaces of the corresponding molecular struc-

tures were then computed, which confirmed that the special geometry of the

disposition of the hinges in D2-generic (or C2-generic) molecular realisations

of the structure does not give rise to any added flexibility.

Using the constructions to be described in Section 7, we can easily gener-

ate further examples of molecular frameworks with various point-group sym-

metries and possessing a small number of symmetry-induced mechanisms.

These structures lend themselves to additional testing of their configuration

spaces in order to investigate further the symmetric molecular conjecture.

5.4. Further examples

Finally, consider the body-hinge structure with C3 symmetry depicted in

Figure 8. The hinges of this structure are all non-torsional. If analysed in C3

symmetry, the structure satisfies the symmetry-extended mobility rule: for a

3-fold rotation, there is no restriction on the number of bodies that lie on the

rotational axis. The corresponding detailed symmetry analysis is given in

Table 5. It follows from these computations that Γ(m)−Γ(s) = 0. However,

if we realise this structure with C3v symmetry, then it cannot be isostatic,
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C3 E C3 C2
3

Γ(v, C) 11 2 2
−Γ‖(e, C) −12 0 0

−Γ0 −1 −1 −1

= −2 1 1
×(ΓT + ΓR) 6 0 0

= −12 0 0
+Γh 12 0 0

= Γ(m)− Γ(s) 0 0 0

Table 5: Calculation of representations used in the symmetry-extended mobility rule for
the C3-symmetric body-hinge structure shown in Figure 8.

since for each reflection σ in the group, we then have h
(NT )
‖σ = 0 6= 4 = h

(NT )
⊥σ .

The corresponding detailed computation for the symmetry-extended mobility

rule for the group C3v is shown in Table 6.

Note that it follows from these calculations that Γ(m)− Γ(s) = 2A1 − 2A2,

which implies that there are two fully symmetric (A1) non-trivial degrees of

freedom and two states of self-stress of symmetry A2 (symmetric under rota-

tion, but antisymmetric under reflection). Thus, by the results in (Kangwai

and Guest, 1999; Guest and Fowler, 2007; Schulze, 2010), we may conclude

that the structure has in fact two continuous symmetry preserving mecha-

nisms.

6. General symmetry conditions for isostatic behaviour

From Table 3, the symmetry treatment of the body-hinge mobility rule

in 3-space reduces to scalar equations of six types. If Γ(m)− Γ(s) = 0, then
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(a) (b)

Figure 8: (a) A body-hinge structure with C3 symmetry, where each body is a flat panel.
The hinge lines between panels are marked with a dashed line, and the C3 axis is indicated
by an arrow. (b) The contact polyhedron.

C3v E 2C3 3σv

Γ(v, C) 11 2 5
−Γ‖(e, C) −12 0 −4

−Γ0 −1 −1 −1

= −2 1 0
×(ΓT + ΓR) 6 0 0

= −12 0 0
+Γh 12 0 4

= Γ(m)− Γ(s) 0 0 4

Table 6: Calculation of representations used in the symmetry-extended mobility rule for
C3v-symmetric realisations of the body-hinge structure shown in Figure 8.
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(i) E : 6b− 6 = 5h (recall e = h)

(ii) Cn6=2(φ) : (4 cosφ + 2)(bn − h(T )‖ − 1) + h
(T )
‖ = 0 (all hinges on an axis

with n > 2 must be torsional hinges)

(iii) C2 : h
(T )
‖ + h

(T )
⊥ + h

(NT )
⊥ − h(NT )‖ = 2(b2 − e‖ + e⊥ − 1)

(iv) σ : h
(NT )
⊥σ − h(NT )‖σ = h

(T )
‖σ + h

(T )
⊥σ

(v) i : h
(T )
c + h

(NT )
c = 0

(vi) Sn6=2(φ) : h
(T )
nc = 0

Hence, some observations and necessary conditions for isostatic behaviour

are:

C2 If there is no fixed hinge, then we need exactly one fixed body.

Cn6=2 We note that the function (4 cosφ + 2), with φ = 2π/n, takes integer

values for n = 1, 2, 3, 4, 6. If n is not one of these values (i.e., 5, 7 or

above) then h
(T )
‖ = 0 and bn = 1 is the only solution.

C3 We must have h
(T )
‖ = 0, but there is no restriction on the number of

bodies on the axis, b3.

C4 For n = 4 the equation reduces to 2(b4 − 1) = h
(T )
‖ , and hence h

(T )
‖ is

clearly even. However the solutions for h
(T )
‖ = 2 and 4 imply that the

skeleton of C is a multigraph and so are not allowed. Note that b4 = 1,

h
(T )
‖ = 0 is a viable solution.
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C6 For n = 6 the equation reduces to 4(b6 − 1) = 3h
(T )
‖ . Clearly b6 = 1,

h
(T )
‖ = 0 is a viable solution.

i and Sn6=2 No hinge can be unshifted by any improper operation.

Useful simplified conditions arise for body-hinge structures restricted to

only torsional or only non-torsional hinge types, where these can be con-

structed. (Symmetry may dictate the types of some symmetrically placed

hinges in a structure and render one or both of the pure framework types

impossible.) For frameworks with only torsional hinges, we have e = h(T ),

e‖ = h
(T )
‖ and e⊥ = h

(T )
⊥ , giving:

T(iii) C2 : 2(b2 − 1) = 3h
(T )
‖ − h

(T )
⊥

T(iv) σ : h
(T )
‖σ + h

(T )
⊥σ = 0

Hence, some additional conditions for isostatic behaviour of molecular struc-

tures are:

C2 Some viable solutions are: (i) b2 = 0, h
(T )
‖ = 0, h

(T )
⊥ = 2; (ii) b2 = 1 if

and only if h
(T )
‖ = h

(T )
⊥ = 0; (iii) b2 = 2, h

(T )
‖ = h

(T )
⊥ = 1.

σ, i and Sn 6=2 No hinge can be unshifted by any improper operation.

For frameworks with only non-torsional hinges, we have e = h(NT ), but

cannot give direct relationships between e‖, e⊥ and h
(NT )
‖ , h

(NT )
⊥ , as for an

edge of C perpendicular to a symmetry axis, the hinge line may be either

parallel or perpendicular to the symmetry axis.
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NT(i)E : 6b− 6 = 5h(NT )

NT(ii)Cn 6=2(φ) : (4 cosφ+ 2)(bn − 1) = 0

NT(iii)C2 : h
(NT )
⊥ − h(NT )‖ = 2(b2 − e‖ + e⊥ − 1)

NT(iv)σ : h
(NT )
⊥σ = h

(NT )
‖σ

NT(v)i : h
(NT )
c = 0

NT(vi)Sn6=2(φ) : 0 = 0

Hence, some further conditions for isostatic behaviour of frameworks with

only non-torsional hinges are:

Cn 6=3 bn = 1 for all n > 2.

A direct consequence of the above conditions is that we can construct an

isostatic body-hinge framework exhibiting any desired point group symmetry

G. The recipe is as follows: Take one central body and attach a loop of

five additional bodies connected by six hinges in general position to give

an isostatic ring. Then use the |G| operations of the group to copy the

additional bodies and hinges to give a final framework consisting of a central

body decorated with a regular orbit of isostatic rings. The whole structure

has 1+5|G| bodies and 6|G| hinges, with Γ(v, C) = Γ0 +5Γreg and Γ‖(e, C) =

Γh = 6Γreg (where Γreg has character |G| under the identity, and zero under

all other symmetry operations), giving Γ(m)−Γ(s) = 0, and confirming that

this bouquet-like structure is isostatic overall.
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In 2D, where all hinges are non-torsional and all hinge lines are perpen-

dicular to the corresponding edge of C, the possible point groups Cnv (and

their Cs or Cn subgroups) imply four symmetry conditions:

2D(i)E : 3b− 3 = 2h

2D(ii)Cn6=2(φ) : (2 cosφ+ 1)(bn − 1) = 0

2D(iii)C2 : h = 2(b2 − e‖ + e⊥ − 1)

2D(iv)σ : h⊥σ = h‖σ

with the consequence that bn = 1 for all Cn with n > 3.

7. Constructing symmetric body-hinge structures with isostatic

counts

Suppose, for a loopless multi-graph with v vertices and e edges, we replace

each vertex by a body and each edge by a chain of k ≥ 1 bodies and k + 1

hinges. Then we obtain a body-hinge structure with b = v + ke bodies and

h = (k+ 1)e hinges. We call this process ‘k-expansion’. We are interested in

structures with the (3D) isostatic count 6b− 6 = 5h, that is,

6(v + ke)− 6 = 5(k + 1)e

6(v − 1) = (5− k)e.

We distinguish the following four cases:
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(i) k = 1. Then we have e = 3
2
(v − 1).

(ii) k = 2. Then we have e = 2(v − 1).

(iii) k = 3. Then we have e = 3(v − 1).

(iv) k = 4. Then we have e = 6(v − 1).

Note that in order to obtain isostatic body-hinge structures, the starting

multi-graph must satisfy one of the above overall counting conditions for e

and v, and also the corresponding sparsity counts for all subgraphs. For

example, for k = 2, we must have the overall count e = 2(v − 1), and the

count e′ ≤ 2(v′ − 1) for each subgraph.

7.1. Case (i)

If k = 1, then v must clearly be odd. Also, the starting graph on which

we perform the expansion cannot have multiple edges, for otherwise the ex-

panded contact graph would contain a 4-cycle, and hence the corresponding

body-hinge structure would not be isostatic. Loops are not allowed: as we

are replacing a loop edge by a chain of k bodies and k + 1 hinges, and

k ∈ {1, 2, 3, 4}, a loop gives rise to a K-ring in the body-hinge structure with

K ∈ {2, 3, 4, 5}, and hence leads to an over-braced substructure (or in the

case of k = 1, K = 2, a non-valid body-hinge structure). Thus, the small-

est non-trivial starting graph is the complete graph K3 which on expansion

becomes the contact graph of a ring of six bodies alternating with hinges.
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(i)
...

(ii)

...

(iii.a)
...

(iii.b) ...

(iv)
...

Figure 9: Infinite families of graphs whose k-expansions are contact graphs of body-hinge
structures which satisfy the 3D isostatic count. If these structures are realised with certain
point group symmetries, then they also satisfy the added symmetry conditions for isostatic
character derived in Sections 4 and 6.
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An infinite family of graphs which satisfy both the overall count e =

3
2
(v−1) and the sparsity count e′ = 3

2
(v′−1) for all subgraphs are the ‘partial

wheels’ W
(part)
2n depicted in Figure 9 (i). If the corresponding body-hinge

structures are realised with Cn symmetry so that the n-fold rotation fixes the

central body, but shifts all other bodies and hinges, then the structure also

satisfies the symmetry conditions for isostatic character derived in Section 6.

Similarly, if a body-hinge structure has a 1-expansion of a partial wheel

W
(part)
4n , n ≥ 1, as its contact graph, and if it is realised with Ci symmetry,

where the central body is fixed by the inversion, then the symmetry condition

for the inversion given in Section 6 is also satisfied.

However, in general, for other types of symmetric body-hinge frameworks

which are constructed from a 1-expansion of a partial wheel W
(part)
2n , our

symmetry conditions detect a non-trivial first-order motion.

Note that if we start with a graph that satisfies the count e = 3
2
(v − 1),

then we can always add two vertices and three edges to retain the isostatic

count, as illustrated in Figure 10. This allows us to generate large structures

which satisfy the isostatic scalar counts, and which can easily be examined

for flexibility using the symmetry extended mobility rule.

7.2. Case (ii)

In this case, the starting graph is allowed to have multiple edges, but no

loops. If we start with a multi-graph that satisfies the count e = 2(v − 1),

we can perform any 2-dimensional Henneberg-type graph construction (such
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(a) (b)

Figure 10: For any starting graph satisfying the count e = 3
2 (v − 1), we can add two

vertices and three edges to retain the isostatic count, bridging any pair of vertices of the
original graph (a). Alternatively, we can ‘add a triangle’ to the original graph, which in
the expanded graph, is equivalent to adding a six-ring (b).

as a vertex 2-addition, an edge 2-split or an X-replacement, e.g. (Tay and

Whiteley, 1985; Ross and Nixon, 2012)) on the graph to retain the isostatic

count. By performing these constructions symmetrically, we may obtain

many symmetric contact graphs of body-hinge structures which have isostatic

counts. Clearly, some modified constructions which add multiple edges to the

graph are also permitted. Further, the count e = 2(v − 1) implies that if we

take the graph of any 2-dimensional rigidity circuit, replace each vertex by a

body, and each edge by 2 bodies and 3 hinges, then we obtain a body-hinge

structure that has an isostatic count. So, in particular, we may also use 2D

circuit-gluing to obtain new structures (Ross and Nixon, 2012).

Note that the wheel graphs Wn shown in Figure 9 (ii) correspond to body-

hinge structures which also satisfy the extra symmetry conditions derived

in Section 6 for the groups Cn, provided that the n-fold rotation fixes the

central body and shifts all other bodies and hinges. Similarly, for W2n, the

corresponding body-hinge structure satisfies the symmetry condition for Ci,

if the central body is fixed by the inversion.

It may be interesting to note that the count e = 2(v−1) is satisfied by all
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self-dual polyhedra, e.g., the pyramids (whose skeletons are the wheel graphs)

and towers constructed by topping a stack of [N ]-prisms with an [N ]-pyramid.

A tower of an [N ]-pyramid topping p [N ]-prisms has v = 1 + (p + 1)N and

e = 2(p+ 1)N and after decoration with 2 bodies and 3 hinges per edge, the

body and hinge counts are respectively b = 1+5(p+1)N , and h = 6(p+1)N .

By counting, the characters of Γ(m)− Γ(s) corresponding to the identity E

and the rotations Cn6=2 are 0, since bn = 1. Hence, in Cn, Γ(m) − Γ(s) = 0

and there are no symmetry-detectable mechanisms or states of self stress.

7.3. Case (iii)

The smallest non-trivial example in this case is the graph with two vertices

which are connected by three parallel edges. This gives rise to the structure

discussed in Section 5 and shown in Fig. 8. In general, if we start with

a loopless multi-graph that satisfies the count e = 3(v − 1), then we can

perform any 3-dimensional Henneberg-type graph construction (such as a

vertex 3-addition or edge 3-split, e.g. (Ross and Nixon, 2012)) to preserve

this count. Clearly, as in Case (ii), some modified constructions which add

multiple edges to the graph are again permitted.

Note that 2-expansions of the wheel graphs with doubled outer edges

shown in Figure 9 (iii.a) (denoted by W
(double)
n ) and 2-expansions of the par-

tial wheel graphs with all edges doubled shown in Figure 9 (iii.b) (denoted

by 2W
(part)
2n ) can be realised as symmetric body-hinge structures that satisfy

the symmetry conditions derived in Section 6, for a number of point groups.
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For example, each of these structures can clearly be realised with Cn

symmetry so that there is exactly one body (the central body) and no hinge

fixed by the n-fold rotation. Further, the symmetry extended counts for the

groups Dn and S2n can be satisfied for appropriate realisations of 2-expanded

wheel graphs W
(double)
2n , and the symmetry extended counts for the groups Cnv,

Cs and Dnh can be satisfied for appropriate realisations of 2-expanded partial

wheel graphs 2W
(part)
2n .

7.4. Case (iv)

In this case, we can again use similar constructions as above to generate

large body-hinge structures which satisfy the non-symmetric Tay counts,

as well as the added symmetry conditions for various point groups. For

example, an infinite family of such structures is obtained from 4-expansions

of wheel graphs whose edges are all tripled, as illustrated in Figure 9 (iv).

A 4-expansion of the graph 3W3 (where 3W3 is obtained from the simple

wheel graph W3 by replacing each edge with a set of three parallel edges) for

example, can be realised as a molecular framework with point group T (i.e.,

with the purely rotational symmetry group of a regular tetrahedron) so that

the criteria of the symmetry extended mobility rule are all satisfied.

7.5. Further Constructions

Finally, we note that there are many other constructions for body-hinge

structures with isostatic scalar counts. For example, if we start with the

contact graph based on a partial octagonal prism shown in Figure 11 (a),
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(a) (b)

Figure 11: Contact graphs of body-hinge structures (where each vertex represents a body
and each edge represents a hinge) which correspond to ‘partial prisms’. The graph in (a)
is the contact graph of the structure shown in Figure 7.

reduce each of the two 8-cycles to 7-cycles, and replace both of the vertical

edges by a path of two edges, then the isostatic counts are preserved (see

Figure 11 (b)). Alternatively, we could expand the two cycles on the top and

on the bottom and add an appropriate number of vertical bars linking the

two rings to preserve the isostatic counts. If realised with certain point group

symmetries, these structures also satisfy the symmetry conditions derived in

Section 6.
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