When is a symmetric body-hinge structure isostatic?
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Abstract

A symmetry-extended mobility rule is formulated for body-hinge frameworks
and used to derive necessary symmetry conditions for isostatic (statically
and kinematically indeterminate) frameworks. Constructions for symmet-
ric body-hinge frameworks with an isostatic scalar count are reported, and
symmetry counts are used to examine these structures for hidden, symmetry-
detectable mechanisms. Frameworks of this type may serve as examples for
exploration of a symmetry extension of the (now proven) ‘molecular conjec-

ture’.
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framework

1. Introduction

[sostatic systems are both kinematically and statically determinate, and
so are fixed in configuration, and have no internal stresses when unloaded,
thus allowing high precision placement of components, as discussed by Maxwell
for scientific apparatus in Section 4 of (Maxwell, 1876). This has particu-
lar engineering relevance in harsh thermal environments such as space (Bu-
jakas and Rybakova, 1998). Isostatic systems are able to react to changes in
shape of their constituent bodies by deforming without building up internal
stresses, and so find application as ‘parallel’ robots, such as the Stewart plat-
form (Stewart, 1965), deployable structures (Miura et al., 1985) and easily
driven adaptive structures (Baker and Friswell, 2009)

In general, symmetry arguments give powerful tools for the detection
of hidden mechanisms in structures that scalar counting arguments would
predict to be isostatic. There are also many examples of highly symmetric
structures that counting without symmetry predicts to be over-constrained,
but which have mechanisms that are revealed by symmetry-extended count-
ing rules (Roschel, 2002, 2012; Chen et al., 2012). The symmetry approach
has already been used to develop symmetry-extended mobility criteria for
bar-and-joint (Fowler and Guest, 2000; Connelly et al., 2009) and body-bar
(Guest et al., 2010) frameworks. Here we make a natural extension to body-

hinge structures, as a way of finding the symmetries of their mechanisms and
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Figure 1: Two example body-hinge structures: (a) shows a central panel connected to two
outer planes through simple rotational hinges; (b) shows a model of a propane molecule
in which each of the outer methyl groups is able to rotate about the bond to the central
carbon atom. Each of these structures has two mechanisms, as in each case the hinges are
able to rotate independently of one another.

states of self stress and identifying conditions for a symmetric structure of
this type to be isostatic. Two simple examples of body-hinge structures are
shown in Figure 1

In addition to the practical goal of explaining mechanisms in particular
systems, the study of symmetry aspects of body-hinge structures has an-
other motivation. The long-standing ‘molecular conjecture’ (Tay and White-
ley, 1984) was recently proved (Katoh and Tanigawa, 2011): under generic
conditions, a body-hinge framework and a ‘molecular’ structure with the
same underlying multi-graph have the same rigidity properties. (A molecu-
lar structure, named by analogy with chemical structures, is one in which the
lines of the hinges attached to each body all pass through a common point in
that body. Figure 1(b) shows an example based on the propane molecule.)

A recently proposed generalisation is the conjecture that symmetric body-

bar, body-hinge and molecular structures that all share a common symmetry



and a common underlying multi-graph will have the same rigidity proper-
ties under symmetry-generic conditions (Porta et al., 2013). Comparison of
the analogous symmetry counts for body-bar frameworks and the molecular
structures that result from specialisation of the body-hinge systems consid-
ered in the present study could provide extra evidence for the ‘symmetric
molecular conjecture’. The present study also gives ways of quickly con-
structing examples of symmetric molecular structures with small numbers of
mechanisms, for comparison with corresponding body-bar frameworks, hence
furnishing examples for investigation of the symmetric molecular conjecture.

The plan of the paper is as follows. First, the symmetry-extended mobil-
ity rule for body-hinge structures is obtained for assemblies of bodies pairwise
connected by revolute hinges. Secondly, we derive general symmetry con-
straints on isostatic structures of body-hinge type. Finally, we present con-
structions for systems that are predicted to be isostatic by counting without
symmetry, and examine their symmetry counts to determine whether they
have symmetry-detectable mechanisms that are hidden by the scalar count.

In what follows, it is assumed that we are working with frameworks in
three dimensions, except when specifically stated that we are dealing with

the restriction of the system to the plane.

2. Background

The simple counting rule for calculating to first order the degrees of free-

dom (or the mobility) m of a mechanical linkage with b bodies connected by



g joints, where joint ¢ permits f; degrees of freedom, is associated with Grbler

and Kutzbach and was given in the following form by Hunt(Hunt, 1978):

m:6(b—1)—6g+Zfi. (1)

The generalized version of this rule that allows for states of self-stress in the
same way as Calladine’s extension (Calladine, 1978) of Maxwell’s Rule for

bar-and-joint frameworks (Maxwell, 1864) is

m—s:6(b—1)—6g+2fi, (2)

=1

where s is the dimension of the space of self-stresses of the linkage. Equation 2
can be derived by considering the dimensions of the four fundamental vector
subspaces of an equilibrium/compatability matrix, which can be defined for
any set of linearised constraints (see, e.g., Guest and Pellegrino (1994) for an
example).

A joint which allows exactly one revolute degree of freedom between the
two bodies that it joins is called a hinge. Moreover, a mechanical linkage is
called a body-hinge structure if every joint of the linkage is a hinge. Our goal
is to derive necessary conditions for a symmetric body-hinge structure to be
isostatic, i.e., to have m = s = 0.

Note that for a body-hinge structure with b bodies and h hinges, (2)
becomes

m—s=6(0b—h—1)+h=06b—6—5h. (3)
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(In the restriction to two dimensions, the RHS is 3(b—h—1)+h = 3b—3—2h.)

3. A symmetry-extended mobility rule for body-hinge structures

The symmetry-extended version of the generalized mobility rule (2) is

(Guest and Fowler, 2005):

T(m) —I(s) = (Op + ) x (D(v,C) = Ty(e,C) —=Tg) + Ty (4)

where each I is the vector of the traces of the corresponding representation
matrices in some point group G. Each such I' is known in applied group the-
ory as a representation of G (Bishop, 1973), or in mathematical group theory
as a character (James and Liebeck, 2001). In applied group theory, the term
character is often used informally for denoting an entry of a representation,
i.e., the trace of a representation matrix (Cotton, 1990) for a given operation.

In (4), I'(m) and I'(s) are the representations of the mobility and the
states of self-stress, respectively. ['y and I'g are the representations of rigid-
body translations and rotations, and can be read off from standard character
tables for point-groups (Atkins et al., 1970; Altmann and Herzig, 1994). In
3D, I'r+TI'g is the six-dimensional I'(1,, T, T,)+I'(R,, Ry, R,); in 2D, I'r+T'g
is the three-dimensional I'(7},T,) + I'(R.), where the system lies in the xy
plane. I'y denotes the trivial representation which takes the value of one for
all group elements.

The other representations are defined in terms of the so-called contact



polyhedron C' associated with the given body-hinge structure. C' has one
vertex for each body of the structure and two vertices are joined by an edge
of C iff the corresponding bodies are connected by a joint. There is some
choice in the construction of C', as we discuss further below. Note that C
is not always a polyhedron in the graph theoretical sense: in some cases it
may correspond to a non-planar graph, and in some to a non-planar graph.
Further, its geometric embedding may have non-planar faces, or even degen-
erate to a polygon. I'(v, C) is the permutation representation of the vertices
of C, and I'|(e, C) is the representation of a set of vectors along the edges of
C. Finally, I't is the representation of the total set of freedoms allowed by
the joints.

Our previous treatments of mobility (Guest and Fowler, 2005) deals with
hinges of all type including sliders and screws, but in the present context,
for a body-hinge structure, the symmetry-extended mobility rule (Guest and

Fowler, 2005) equivalent to (3) is

F(m) — F(S) = (FT + FR) X (F(U, C) - F||(e, C) - Fo) + Iy (5)

where I'y, is the representation of the revolute degrees of freedom allowed by
the hinges (which we will determine below).

The form of the product on the RHS of (5) has one immediate conse-
quence: as the multiplier (I'y + I'g) has character zero under all improper

(parity reversing) operations, the character of I'(m) — I'(s) under such op-



erations is determined entirely by that of the hinge freedoms for those op-
erations. A second deduction can be made about frameworks that have
an isostatic count of bars and hinges and have no body or hinge lying on
an element of symmetry. Following the reasoning applied to bar-and-joint
frameworks in (Fowler et al., 2014), in the present case it is the bodies and
hinges that fall into orbits of size |G|, and all vertex, edge and hinge repre-
sentations are multiples of I',e; (Which has character |G| under the identity,

and zero under all other symmetry operations). Thus,

['(v,C) = bolyeg

F”((E,C) = Fh:hoFreg,

with by = b/|G| and hg = h/|G|. Since the framework has an isostatic count

under the identity operation, we have (in 3D)

(6by — 5ho)[G] = 6. (6)

The full symmetry equation (5) reduces to

6

I'(m)—T(s) = [l

[reg — (I + T'r), (7)

implying that the representation I'(m) —I'(s) has character —4 cos(2m/n) — 2
under operations C,, and zero under all others. The framework must then

have symmetry-detectable mechanisms and/or states of self stress unless the



rigid body motions have the special symmetry

6
1—‘T + 1—‘R - ‘g_lrreg- (8)

This last relation holds only for the following point groups: Cs,, Csn, Se
(|G| = 6); Cs (|G| = 3); Ci, Cs (|G| = 2); and the trivial C; (|G| = 1). In all
other groups, no framework where the count is isostatic and all components
are general position can be isostatic in fact.

For frameworks restricted to the plane, equations (7) and (8) reduce to

3
F(m) — F(S) = @Freg - (FT + FR), (9)
and the isostatic requirement is
3
I'r +Tr = 5 (10)

4

The available point groups for the 2D case are C,, and C,, (with Cs = Cy,),
and the requirement (10) holds only for C3 and the trivial C;. Thus, Cs is the
only non-trivial symmetry group for which a 2D isostatic framework cab be
achieved without structural elements lying on an element of symmetry.

The machinery of the symmetry-extended mobility rule requires a geo-
metric realisation of the contact graph, and this is what we are calling here
the contact polyhedron, C. The notion of a contact polyhedron requires some

further discussion in the context of body-hinge frameworks. Given a body-



hinge assembly, the contact graph is defined by the underlying combinatorics
of the assembly; the vertices correspond to the bodies and the edges to the
hinges, each of which links exactly two bodies. Thus, the contact graph is
simple, without loops or multiple edges. We are interested in the kinematics
of this assembly, rather than the physical shapes of the individual bodies,
and hence the significant geometrical information is that related to the posi-
tioning of the hinge lines. Together, the contact graph and the geometry of
the hinge lines together define the ‘kinematic symmetry’ of the framework,
and hence a point group G.

In general, there is some freedom in the choice of the contact polyhe-
dron C'. To maximize information, we wish to work within the kinematic
symmetry group, the largest point group compatible with the disposition of
hinges and bodies, and therefore impose this symmetry on C. For simplicity,
where possible we wish to align edges of C' along hinge lines. Hinges which
are aligned with edges of C' will be called torsional hinges. In some cases,
this alignment will fully define the positions of the vertices of C. If this is
true for all vertices, and hence all hinges are torsional hinges, then we have a
molecular framework, as defined earlier. Hinges that are not so aligned with
edges will be called non-torsional. In frameworks confined to the plane, all
hinges are of this type.

Figure 2 shows a simple case where two fully symmetric choices of C' can
be made, one where all edges of C' line up with hinge lines (torsional) and one

where all edges of C' are perpendicular to hinge lines (non-torsional). Working
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Figure 2: Examples of the choice of geometrically distinct contact ‘polyhedra’ for the same
body-hinge structure, in this case the three plane structure shown in Figure 1(a). Three
choices are shown: (a) edges chosen perpendicular to the hinge lines; (b) edges chosen
along the hinge lines; (c¢) edges chosen to have no particular geometric relationship with
the hinge lines.

\
\

consistently with either choice yields the same expression for I'(m)—T'(s), as it
must, since mechanisms and self-stresses exist independently of our procedure
for calculating their representations. In this case, we find I'(m) — ['(s) =
Ag 4+ Bs, which describe respectively con- and dis-rotatory combinations of

the two independent hinge mechanisms.

4. Derivation of the symmetry representations for isostatic body-

hinge frameworks

Given a choice of contact polyhedron, and in particular the positions of
the edges, hinges fall into the two basic types, torsional and non-torsional,

defined above and illustrated in Figures 3 and 4.

In order to apply the symmetry-extended mobility rule, we need to know
how the degree of freedom of a hinge behaves under the various symmetry
operations that might leave the hinge unshifted. For a given hinge, the

contribution to the character (or trace of the representation matrix) for an
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Figure 3: (a) A torsional hinge (with the dashed line denoting the hinge line). The vector
indicates the directed edge e of the contact polyhedron. For a torsional hinge, the hinge
line is collinear with the edge e. (b) A symbolic depiction of the torsional hinge, showing
the hinge realised as a rod with a stop rotating within a cylindrical tube. Note that a
torsional hinge in isolation has Dy, symmetry.
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Figure 4: (a) A non-torsional hinge (with the dashed line denoting the hinge line). The
vector indicates the directed edge e of the contact polyhedron. For a non-torsional hinge,
the hinge line crosses the edge e. (b) A symbolic depiction of a non-torsional hinge. Note
that a non-torsional hinge in isolation has at most Dy;, symmetry, realised when the angle
between e and h is 90°.
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operation x € G that leaves the hinge unshifted is X evolute, cOmputed using

the formula (Guest and Fowler, 2005):

Xrevolute(x) = XRy, (x>X6|| (I) :

The two terms on the RHS of this expression are easily computed and the

results for Yievowte are as shown in Tables 1 and 2 for torsional and non—

torsional hinges, respectively.

| E Cuh) Cy o(hl) o(h) i S.(h)

XRy, 1 1 —1 —1 1 1 1
Xel 1 1 -1 1 1 -1 -1
Xrevolute 1 1 1 -1 —1 -1 —1

Table 1: Contribution to characters for a single torsional hinge that is unshifted under a
given operation. C} are half-turns about axes perpendicular to the hinge line h. o(h 1)
is a mirror which contains the hinge line h. o(h) is the mirror with normal line h.

| E Cy(h) Colell) Co(hxel) i o(h) olel) o(hxel])
XR, 1 1 -1 -1 1 1 -1 -1
Xel 1 -1 1 ~1 -1 1 -1 1
Xrevolute 1 —1 -1 1 —1 1 1 —1

Table 2: Contribution to characters for a single non-torsional hinge that is unshifted under
a given operation. Cy, (1) is the n-fold rotation about axis I: Cs(e ||) is the two-fold rotation
along the edge of the contact polyhedron; Ca(h X e ||) is the two-fold rotation about a line
perpendicular to both the edge and the hinge line h. o(l) is the mirror with normal line .
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The characters of the representation I'(v, C'), i.e., the permutation represen-
tation of the bodies, are used to construct the first line of Table 3. The

following notation is used:

b is the number of bodies (number of vertices of the contact polyhedron C);
b, denotes the number of vertices of C' that are fixed by a rotation C,,, n > 3;
by denotes the number of vertices of C' that are fixed by a half-turn Cj;
b, denotes the number of vertices of C' that are fixed by a reflection o;
b. denotes the number of vertices of C' that are fixed by an inversion i;

bn. denotes the number of vertices of C' that are fixed by an improper rotation

Sn, n > 3.

The characters of the representation I'| (e, C') are also used in the construction

of the first line of Table 3. The relevant notation is:

e is the number of edges of the contact polyhedron

e is the number of edges which lie along a C), axis (For n > 2 these edges

must correspond to torsional hinges);
e, is the number of edges which lie perpendicular to a Cs axis;

€llos €1, are the numbers of edges that are centered in, and lie parallel /

perpendicular to, a o reflection plane;

14



e. is the number of edges centered at the inversion centre;

éne 18 the number of edges that lie along an improper S, rotation axis and

are reversed by the S, operation.

Finally, the characters of the representation I', are given in the last line of

Table 3. The relevant notation is:

h = e is the number of hinges;

h|(|T), h‘(‘NT) are the numbers of torsional /non-torsional hinges whose hinge-

line lies along the C), axis (n > 2 is possible only for a torsional hinge);

h(lT), h(LNT) are the numbers of torsional/non-torsional hinges whose hinge-

line lies across a C), axis (only n = 2 is possible);

BT B0 (NT)

(NT) . . .
lo» Pigs My, *s Iy, ' are the numbers of torsional/non-torsional hinges

centered in, and lying parallel /perpendicular to, a o reflection plane;

h&T), AT are the numbers of torsional /non-torsional hinges whose hinge-

lines are centered at the inversion centre;

KL is the number of torsional hinges whose hinge-line lies along an .5,, axis
where n > 2, and are reversed by the S, operation (possible only for a

torsional hinge).
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5. Examples

By Tay’s theorem (Tay, 1984) and the proof of the molecular conjecture
(Katoh and Tanigawa, 2011), a generic body-hinge or molecular framework
in three dimensions with b bodies and h hinges is isostatic if and only if
it satisfies the scalar count 5h = 6b — 6, and for all substructures with A’
hinges connecting b bodies, we have 5h' < 60 — 6. In the following, we
use the symmetry representations of the previous section to examine the
symmetry-induced mobility of some symmetric body-hinge structures which

are predicted to be isostatic by Tay’s counts.

5.1. Conformers of cyclohexane

As a first example, we consider a ring of six carbon atoms (the carbon
skeleton of the cyclohexane molecule) and its two basic conformations, the
‘boat’” and the ‘chair’ (see Figure 5.1). These structures are also molecular
frameworks in the mathematical sense, consisting of six bodies (atoms) and
six torsional hinges (bonds). Clearly, cyclohexane satisfies the isostatic scalar
count 5h = 6b — 6 = 30, and it is easy to verify that the sparsity condition
for all substructures is also satisfied. Thus, generic realisations of this 6-loop
Guest and Fowler (2010) framework are isostatic.

Suppose now that the structure is realised with Cy symmetry, as the boat
conformation of cyclohexane (see Figure 5.1(a)). As there is no hinge fixed
by the half-turn, it follows from the characters in Table 3 that there must

be exactly one body fixed by the half-turn (i.e., by = 1) for the structure to
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be isostatic. Thus, since the boat conformation has no body fixed by the
half-turn, we may conclude that the boat is not isostatic. In fact, we have
['(m)—T'(s) = A— B, as computed in (Guest and Fowler, 2010), for example,
and there is a well known continuous mechanism between boat forms (see
e.g., Graveron-Demilly (1977, 1978)).

Similarly, using the calculations in Table 3, it is easy to verify that the
chair conformation of cyclohexane (i.e., the six-ring realised with C3 symme-
try) satisfies the count I'(m) — I'(s) = 0, as there is neither a hinge nor a
body fixed by the three-fold rotation (see Figure 5.1(b)). Thus, the ‘chair’ is

correctly predicted to be isostatic.

O Cs
Q, | 9 |
\0_;0 / o\:w/o
\o o/ o// Q\o/

(a) (b)

Figure 5: Two basic conformations of cyclohexane: The ‘boat’ has half-turn symmetry
and is flexible (a); the ‘chair’ has 3-fold rotational symmetry and is isostatic (b).

The Cy-preserving continuous mechanism of the ‘boat’ and the rigidity
of the ‘chair’ were also treated in (Schulze et al., 2013) by modeling the
molecular structures as body-bar frameworks, where each hinge is replaced
by 5 independent bars, each intersecting the corresponding hinge line (leaving
one relative degree of freedom between a pair of bodies), and by applying
‘orbit counting methods’ (Schulze et al., 2013; Schulze and Whiteley, 2011,

Tanigawa, 2012) for body-bar frameworks to these structures.
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However, note that while the orbit counts in (Schulze et al., 2013) (as
well as the results in (Guest et al., 2010) and (Tanigawa, 2012)) provide
information about the (symmetry-preserving) mobility of symmetric body-bar
realisations of a given multi-graph, a proof of the symmetric version of the
molecular conjecture would be needed to transfer these results to symmetric
molecular realisations of the multi-graph. More precisely, the symmetric
molecular conjecture asserts that under symmetry-generic conditions, a body-
bar framework and a molecular framework with the same underlying multi-
graph have the same rigidity properties (Porta et al., 2013); that is, the
special geometry of the positioning of the hinge lines in a symmetry-generic
molecular realisation of the multi-graph cannot give rise to any additional
(first-order) flexibility.

As the special geometry of the hinge locations in a molecular framework
is captured by the contact polyhedron C', the present method allows us to an-
alyze the mobility of symmetric molecular structures directly, without using
the unproven symmetric molecular conjecture, and hence is more powerful
than orbit-based counting methods for body-bar frameworks. In fact, part of
the motivation for the present contribution is that our results concerning the
rigidity and flexibility of symmetric body-hinge and molecular frameworks
can be compared with corresponding results for symmetric body-bar frame-
works in order to probe the symmetric molecular conjecture. For example,
when compared with the symmetry counts for body-bar frameworks derived

in (Guest et al., 2010), the symmetry counts for the corresponding molecular
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frameworks obtained in this paper do not give rise to any added necessary
conditions for rigidity, and are thus compatible with the symmetric molecular

conjecture.

5.2. Ring of rotating tetrahedra

Another symmetric body-hinge structure with the 6-cycle as a contact
graph is the ring of six rotating tetrahedra shown in Figure 6. The maximal
symmetry that this structure can achieve is D3y. Note that the position-
ing of the hinge lines in this structure prevents us from choosing a contact
polyhedron with D3, symmetry whose edges are aligned with the hinge lines.
Therefore, each of the hinges in this structure is non-torsional. For each re-
flection ¢ with a ‘vertical mirror plane’ in the group, there are exactly two
hinges that are fixed by o, and since both of these hinges lie parallel to the
reflection plane (i.e., hI(IJ;[T) = 2), the characters in Table 3 imply that the
structure has a non-trivial first-order motion. In fact, this motion extends
to a continuous mechanism which maintains Cs, symmetry throughout the
path. For a detailed analysis of this mechanism we refer the reader to (Guest,

2000; Fowler and Guest, 2005; Guest and Fowler, 2010).

5.8. A partial prism

Next, we consider the molecular structure shown in Figure 7. This struc-
ture is based on a partial octagonal prism and consists of two rings of 8 bodies
alternating with (8) torsional hinges which are linked by two additional tor-

sional hinges. This structure is easily verified to satisfy the non-symmetric
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(a)

Figure 6: The finite motion of the rotating ring of six tetrahedra, showing one quarter
of a complete cycle: (a) Dsp high symmetry point; (b) generic Cs, symmetry; (¢) Dsq
high symmetry point; (d) generic Cs, symmetry; (e) Ds; high symmetry point. The hinge
lines between tetrahedra have been marked with a dashed line. The contact polyhedron
is also shown for (c), where the edges of the polyhedron are perpendicular to the hinge
lines, which are shown dashed and centred on the polyhedron edges.

Tay counts, and hence is isostatic for generic, non-symmetric realisations.
As indicated in Figure 7, the structure can be realised with a maximal point
group symmetry of Dy, in which case it follows immediately from the char-
acters in Table 3 that there exists a non-trivial first-order motion. Since two
of the three half-turn axes intersect neither a body nor hinge, the structure
cannot be isostatic. In Table 4, we give a detailed analysis of Dy-symmetric
realisations of this structure using the symmetry-extended mobility rule.
By the computation shown in Table 4, we have ['(m) — I'(s) = Ay — By,
indicating one mechanism that preserves the full Dy symmetry, and a Bs-
symmetric state of self-stress that is symmetric under only one of the two-fold
rotations. As the mechanism is totally symmetric and the state of self-stress

is not, the mechanism is finite (Kangwai and Guest, 1999; Guest and Fowler,
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Figure 7: A molecular structure based on a partial octagonal prism which has a continuous
motion that preserves Do symmetry. Dashed lines indicate edges that are removed from
the complete prism to form this structure. Axes x, y and z are Cy symmetry elements.

DQ E Cg(x) 02(y> CQ(Z)
I'(v,C)| 16 0 0 0
—FH(e, O) —18 0 2 0
Iy | —1 —1 -1 —1
= -3 -1 1 -1
x(I'r + T 6 -2 -2 =2
= | —18 2 -2 2
+I'y 18 0
=T(m)—T(s) 0

Table 4: Calculation of representations used in the symmetry-extended mobility rule for
the molecular structure shown in Figure 7, and here analysed in D, symmetry.
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2007) (see also (Schulze, 2010)).

In Porta et al. (2013), orbit-counting methods for symmetric body-bar
frameworks were used to predict a symmetry-preserving continuous mecha-
nism of this structure whenever it is realised with Dy (or C3) point group
symmetry. To gather evidence for the symmetric version of the molecular
conjecture, the configuration spaces of the corresponding molecular struc-
tures were then computed, which confirmed that the special geometry of the
disposition of the hinges in Dy-generic (or Co-generic) molecular realisations
of the structure does not give rise to any added flexibility.

Using the constructions to be described in Section 7, we can easily gener-
ate further examples of molecular frameworks with various point-group sym-
metries and possessing a small number of symmetry-induced mechanisms.
These structures lend themselves to additional testing of their configuration

spaces in order to investigate further the symmetric molecular conjecture.

5.4. Further examples

Finally, consider the body-hinge structure with C3 symmetry depicted in
Figure 8. The hinges of this structure are all non-torsional. If analysed in C3
symmetry, the structure satisfies the symmetry-extended mobility rule: for a
3-fold rotation, there is no restriction on the number of bodies that lie on the
rotational axis. The corresponding detailed symmetry analysis is given in
Table 5. It follows from these computations that I'(m) —I'(s) = 0. However,

if we realise this structure with Cs, symmetry, then it cannot be isostatic,
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G| B 0 2

(v, C) 11 2 2
—F”(B,C) —12 0 0

—Iy -1 -1 -1

=| -2 1 1

x(Dy +Tg 6 0 0

= | —12 0 0

+I'y 12 0 0
=T'(m)—T(s) o 0 0

Table 5: Calculation of representations used in the symmetry-extended mobility rule for
the Cs3-symmetric body-hinge structure shown in Figure 8.

since for each reflection ¢ in the group, we then have hﬁfT) =0#£4= h(j\?).
The corresponding detailed computation for the symmetry-extended mobility
rule for the group Cs, is shown in Table 6.

Note that it follows from these calculations that I'(m) — I'(s) = 24; — 2A,,
which implies that there are two fully symmetric (A;) non-trivial degrees of
freedom and two states of self-stress of symmetry A, (symmetric under rota-
tion, but antisymmetric under reflection). Thus, by the results in (Kangwai
and Guest, 1999; Guest and Fowler, 2007; Schulze, 2010), we may conclude
that the structure has in fact two continuous symmetry preserving mecha-

nisms.

6. General symmetry conditions for isostatic behaviour

From Table 3, the symmetry treatment of the body-hinge mobility rule

in 3-space reduces to scalar equations of six types. If ['(m) — I'(s) = 0, then
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(a) (b)

Figure 8: (a) A body-hinge structure with C3 symmetry, where each body is a flat panel.
The hinge lines between panels are marked with a dashed line, and the C5 axis is indicated
by an arrow. (b) The contact polyhedron.

0
0
+I'y 12 0
=T(m)—T(s) 0 0

Table 6: Calculation of representations used in the symmetry-extended mobility rule for
Cs,-symmetric realisations of the body-hinge structure shown in Figure 8.
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(i) E:6b—6 =>5h (recall e = h)

(ii) Crra(e) : (4cos ¢+ 2)(b, — hI(IT) —-1)+ hﬁT) = 0 (all hinges on an axis
with n > 2 must be torsional hinges)

(iii) Co: hf” + 2T + R — YT = 2(by — ey + e — 1)

: NT NT T T

(1V) o hg_a ) - h|(|0 ) = h|(|a) + hg_cr)

(v) i: A 4 BN = ¢
(vi) Spsa(®) : iR =0

Hence, some observations and necessary conditions for isostatic behaviour

are:
Csy If there is no fixed hinge, then we need exactly one fixed body.

Crz2 We note that the function (4 cos ¢ + 2), with ¢ = 27 /n, takes integer
values for n = 1,2,3,4,6. If n is not one of these values (i.e., 5, 7 or

above) then h‘(‘T) = 0 and b,, = 1 is the only solution.

C3 We must have hI(IT) = 0, but there is no restriction on the number of

bodies on the axis, bs.

Cy For n = 4 the equation reduces to 2(by — 1) = h‘(‘T), and hence h|(|T) is
clearly even. However the solutions for h‘(‘T) = 2 and 4 imply that the
skeleton of C'is a multigraph and so are not allowed. Note that by = 1,

hI(IT) = 0 is a viable solution.
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Cs For n = 6 the equation reduces to 4(bg — 1) = 3h|(‘T). Clearly bg = 1,

hI(IT) = 0 is a viable solution.
i and S,»» No hinge can be unshifted by any improper operation.

Useful simplified conditions arise for body-hinge structures restricted to
only torsional or only non-torsional hinge types, where these can be con-
structed. (Symmetry may dictate the types of some symmetrically placed
hinges in a structure and render one or both of the pure framework types
impossible.) For frameworks with only torsional hinges, we have e = h("),

e = h|(|T) and e, = h(LT), giving:
T(iii) Cp:2(by — 1) =3h" — "
T(iv) o: h‘(‘? + hf,) =0

Hence, some additional conditions for isostatic behaviour of molecular struc-

tures are:

Cy Some viable solutions are: (i) by = 0, h|(|T) =0, h(lT) = 2; (ii) by = 1 if

and only if A" = h(") = 0 (iii) by = 2, h{" = A" = 1.

o, ¢ and S,»» No hinge can be unshifted by any improper operation.

For frameworks with only non-torsional hinges, we have e = A7) but

cannot give direct relationships between e|,e, and h‘(‘NT),h(LNT)

, as for an
edge of C perpendicular to a symmetry axis, the hinge line may be either

parallel or perpendicular to the symmetry axis.
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NH(ipb — 6 = 5hNT)

NT (@) : (4cos¢ +2) (b —1) = 0

Nayiiiy ) — BN = 2(by — ey e — 1)

Nk = p

lle

NE®™ =0
NS (i) = 0 = 0

Hence, some further conditions for isostatic behaviour of frameworks with

only non-torsional hinges are:
Crzs b, =1 for all n > 2.

A direct consequence of the above conditions is that we can construct an
isostatic body-hinge framework exhibiting any desired point group symmetry
G. The recipe is as follows: Take one central body and attach a loop of
five additional bodies connected by six hinges in general position to give
an isostatic ring. Then use the |G| operations of the group to copy the
additional bodies and hinges to give a final framework consisting of a central
body decorated with a regular orbit of isostatic rings. The whole structure
has 14 5|G| bodies and 6|G| hinges, with I'(v, C') = I'g+5I',¢; and 'y (e, C) =
I', = 6@y (where I'\e, has character |G| under the identity, and zero under
all other symmetry operations), giving I'(m) —I'(s) = 0, and confirming that

this bouquet-like structure is isostatic overall.

28



In 2D, where all hinges are non-torsional and all hinge lines are perpen-
dicular to the corresponding edge of C, the possible point groups C,, (and

their Cs or C, subgroups) imply four symmetry conditions:
2B(i)3b — 3 = 2h
204ii)(¢) : (2cos @+ 1)(by —1) =0
204iiip = 2(by — e + e — 1)
2D (iN) , = b,

with the consequence that b,, = 1 for all C,, with n > 3.

7. Constructing symmetric body-hinge structures with isostatic

counts

Suppose, for a loopless multi-graph with v vertices and e edges, we replace
each vertex by a body and each edge by a chain of £ > 1 bodies and k + 1
hinges. Then we obtain a body-hinge structure with b = v + ke bodies and
h = (k4 1)e hinges. We call this process ‘k-ezpansion’. We are interested in

structures with the (3D) isostatic count 6b — 6 = 5h, that is,

6(v+ke)—6 = bH(k+1)e

6(v—1) = (5—ke.

We distinguish the following four cases:
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(i) k=1. Then we have e = 3(v —1).
(ii) k& = 2. Then we have e = 2(v — 1).
(iii) £ = 3. Then we have e = 3(v — 1).
(iv) k = 4. Then we have e = 6(v — 1).

Note that in order to obtain isostatic body-hinge structures, the starting
multi-graph must satisfy one of the above overall counting conditions for e
and v, and also the corresponding sparsity counts for all subgraphs. For
example, for £ = 2, we must have the overall count e = 2(v — 1), and the

count €' < 2(v’ — 1) for each subgraph.

7.1. Case (i)

If £ =1, then v must clearly be odd. Also, the starting graph on which
we perform the expansion cannot have multiple edges, for otherwise the ex-
panded contact graph would contain a 4-cycle, and hence the corresponding
body-hinge structure would not be isostatic. Loops are not allowed: as we
are replacing a loop edge by a chain of k bodies and k& + 1 hinges, and
k€ {1,2,3,4}, aloop gives rise to a K-ring in the body-hinge structure with
K € {2,3,4,5}, and hence leads to an over-braced substructure (or in the
case of k = 1, K = 2, a non-valid body-hinge structure). Thus, the small-
est non-trivial starting graph is the complete graph K3 which on expansion

becomes the contact graph of a ring of six bodies alternating with hinges.
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(i)

(iii.a)

(iii.b)

(iv)

Figure 9: Infinite families of graphs whose k-expansions are contact graphs of body-hinge
structures which satisfy the 3D isostatic count. If these structures are realised with certain
point group symmetries, then they also satisfy the added symmetry conditions for isostatic
character derived in Sections 4 and 6.

31



An infinite family of graphs which satisfy both the overall count e =
3(v—1) and the sparsity count ¢’ = 2(v'—1) for all subgraphs are the ‘partial
wheels’ W§,§’m> depicted in Figure 9 (i). If the corresponding body-hinge
structures are realised with C,, symmetry so that the n-fold rotation fixes the
central body, but shifts all other bodies and hinges, then the structure also
satisfies the symmetry conditions for isostatic character derived in Section 6.

Similarly, if a body-hinge structure has a 1-expansion of a partial wheel
WP > 1, as its contact graph, and if it is realised with C; symmetry,
where the central body is fixed by the inversion, then the symmetry condition
for the inversion given in Section 6 is also satisfied.

However, in general, for other types of symmetric body-hinge frameworks
which are constructed from a l-expansion of a partial wheel nga‘”“, our
symmetry conditions detect a non-trivial first-order motion.

Note that if we start with a graph that satisfies the count e = %(v —1),
then we can always add two vertices and three edges to retain the isostatic
count, as illustrated in Figure 10. This allows us to generate large structures

which satisfy the isostatic scalar counts, and which can easily be examined

for flexibility using the symmetry extended mobility rule.

7.2. Case (ii)

In this case, the starting graph is allowed to have multiple edges, but no
loops. If we start with a multi-graph that satisfies the count e = 2(v — 1),

we can perform any 2-dimensional Henneberg-type graph construction (such
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Figure 10: For any starting graph satisfying the count e = 2(v — 1), we can add two
vertices and three edges to retain the isostatic count, bridging any pair of vertices of the
original graph (a). Alternatively, we can ‘add a triangle’ to the original graph, which in
the expanded graph, is equivalent to adding a six-ring (b).

as a vertex 2-addition, an edge 2-split or an X-replacement, e.g. (Tay and
Whiteley, 1985; Ross and Nixon, 2012)) on the graph to retain the isostatic
count. By performing these constructions symmetrically, we may obtain
many symmetric contact graphs of body-hinge structures which have isostatic
counts. Clearly, some modified constructions which add multiple edges to the
graph are also permitted. Further, the count e = 2(v — 1) implies that if we
take the graph of any 2-dimensional rigidity circuit, replace each vertex by a
body, and each edge by 2 bodies and 3 hinges, then we obtain a body-hinge
structure that has an isostatic count. So, in particular, we may also use 2D
circuit-gluing to obtain new structures (Ross and Nixon, 2012).

Note that the wheel graphs W,, shown in Figure 9 (ii) correspond to body-
hinge structures which also satisfy the extra symmetry conditions derived
in Section 6 for the groups C,, provided that the n-fold rotation fixes the
central body and shifts all other bodies and hinges. Similarly, for W, the
corresponding body-hinge structure satisfies the symmetry condition for C;,
if the central body is fixed by the inversion.

It may be interesting to note that the count e = 2(v —1) is satisfied by all
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self-dual polyhedra, e.g., the pyramids (whose skeletons are the wheel graphs)
and towers constructed by topping a stack of [N]-prisms with an [V]-pyramid.
A tower of an [N]-pyramid topping p [N]-prisms has v = 1+ (p+ 1)N and
e =2(p+ 1)N and after decoration with 2 bodies and 3 hinges per edge, the
body and hinge counts are respectively b = 1+5(p+1)N, and h = 6(p+1)N.
By counting, the characters of I'(m) — I'(s) corresponding to the identity F
and the rotations C,o are 0, since b, = 1. Hence, in C,, I'(m) — I'(s) = 0

and there are no symmetry-detectable mechanisms or states of self stress.

7.8. Case (iii)

The smallest non-trivial example in this case is the graph with two vertices
which are connected by three parallel edges. This gives rise to the structure
discussed in Section 5 and shown in Fig. 8. In general, if we start with
a loopless multi-graph that satisfies the count e = 3(v — 1), then we can
perform any 3-dimensional Henneberg-type graph construction (such as a
vertex 3-addition or edge 3-split, e.g. (Ross and Nixon, 2012)) to preserve
this count. Clearly, as in Case (ii), some modified constructions which add
multiple edges to the graph are again permitted.

Note that 2-expansions of the wheel graphs with doubled outer edges
shown in Figure 9 (iii.a) (denoted by W) and 2-expansions of the par-
tial wheel graphs with all edges doubled shown in Figure 9 (iii.b) (denoted
by 2WiP) can be realised as symmetric body-hinge structures that satisfy

the symmetry conditions derived in Section 6, for a number of point groups.
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For example, each of these structures can clearly be realised with C,
symmetry so that there is exactly one body (the central body) and no hinge
fixed by the n-fold rotation. Further, the symmetry extended counts for the
groups D,, and S,,, can be satisfied for appropriate realisations of 2-expanded
wheel graphs W%"™® and the symmetry extended counts for the groups Cpy,

C,s and D,,;, can be satisfied for appropriate realisations of 2-expanded partial

wheel graphs 2W5P*

7.4. Case (iv)

In this case, we can again use similar constructions as above to generate
large body-hinge structures which satisfy the non-symmetric Tay counts,
as well as the added symmetry conditions for various point groups. For
example, an infinite family of such structures is obtained from 4-expansions
of wheel graphs whose edges are all tripled, as illustrated in Figure 9 (iv).
A 4-expansion of the graph 3Wj (where 3W3 is obtained from the simple
wheel graph W3 by replacing each edge with a set of three parallel edges) for
example, can be realised as a molecular framework with point group 7 (i.e.,
with the purely rotational symmetry group of a regular tetrahedron) so that

the criteria of the symmetry extended mobility rule are all satisfied.

7.5. Further Constructions

Finally, we note that there are many other constructions for body-hinge
structures with isostatic scalar counts. For example, if we start with the

contact graph based on a partial octagonal prism shown in Figure 11 (a),
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() (b)

Figure 11: Contact graphs of body-hinge structures (where each vertex represents a body
and each edge represents a hinge) which correspond to ‘partial prisms’. The graph in (a)
is the contact graph of the structure shown in Figure 7.

reduce each of the two 8-cycles to 7-cycles, and replace both of the vertical
edges by a path of two edges, then the isostatic counts are preserved (see
Figure 11 (b)). Alternatively, we could expand the two cycles on the top and
on the bottom and add an appropriate number of vertical bars linking the
two rings to preserve the isostatic counts. If realised with certain point group
symmetries, these structures also satisfy the symmetry conditions derived in

Section 6.
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